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ABSTRACT

The Stillwater Complex, in south-central Montana, is a Late Archean layered, ultramafic to
mafic intrusion emplaced into Middle to Late Archean metagraywacke, metashale, and iron-
formation. Sulfide minerals are concentrated near the base of the intrusion, in some chromitite
layers, in podiform pegmatoids, in discontinuous discordant pods or pipes, and in numerous thin,
stratiform layers. This investigation focusses on the isotopic composition of sulfur in
metamorphosed sedimentary rocks, Stillwater-associated sills and dikes, sulfide accumulations
near the base of the complex, and platinum-group element (PGE)-enriched sulfide mineralization
that constitutes the J-M Reef and the Picket Pin deposit.

The 834S values for 233 samples analyzed in this study have a mean of 0.4 per mil, a standard
deviation of 1.7, and maximum and minimum of -3.8 and 7.8 per mil. Despite the very narrow
range of values, inspection of the data show, and analysis of variance calculations confirm that the
analyses comprise three distinct groups. These groups are: 1) metagraywacke and metashale
(mean 2.8 per mil); 2) iron-formation, Stillwater-associated sills and dikes, and basal sulfide
accumulations in the complex (mean -0.7 per mil) and 3) disseminated sulfide minerals that occur
above the basal accumulations in the Stillwater Complex (mean 1.2 per mil). The isotopic
composition of sulfur of the basal sulfide accumulations indicates that assimilation of substantial
amounts of sulfur from iron-formation could be an important mechanism for the formation of the
basal sulfide deposits. This is consistent with the low tenor of the basal sulfide ores.

INTRODUCTION
Sulfur isotopic studies of magmatic sulfide deposits have demonstrated the importance of the

assimilation of crustal sulfur in the formation of some magmatic sulfide deposits (Mainwaring and
Naldrett, 1977; Ripley 1981; Godlevskii and Grenenko, 1963). Sulfide minerals are present in
most of the Stillwater Complex cumulates (0.000x to 0.00x vol %) and are notably concentrated in
some intervals (0.1 to 100 vol %). Despite this, very few sulfur isotopic analyses have been done
on Stillwater Complex rocks. Early studies by Thode and others (1962) and Smitheringale and
Jensen (1963) focussed on six samples from near the base of the complex; they reported an

average 534S value of 1.6 per mil and a range from 0 to 5.9 per mil.

The purpose of this study is to characterize the isotopic composition of sulfur in rocks from the
Stillwater Complex, Stillwater-associated sills and dikes, and metasedimentary rocks intruded by
the complex. Samples from the complex represent four major mineralized intervals: 1)
disseminated to massive Fe, Cu, Ni sulfide accumulations associated with the Basal series in the -
Mountain View, Nye Basin, and Iron Mountain areas (Page, 1979; Zientek, 1983); 2) Ultramafic
series disseminated to massive Fe, Cu, Ni sulfide accumulations in the Iron Mountain area (the
Camp deposit); 3) the platinum-group element (PGE)-enriched disseminated sulfide mineralization
that constitutes the J-M Reef (Todd and others, 1982; Barnes and Naldrett, 1985); and 4) the PGE-
enriched disseminated sulfide mineralization that constitutes the Picket Pin deposit (Boudreau and
McCallum, 1986). Results of the isotopic analyses are used to evaluate the source and evolution of
sulfur in these rocks.

GEOLOGIC SETTING

The Stillwater Complex, figure 1, intrudes Middle to Late Archean metasedimentary rocks
originally consisting of graywacke, shale, diamictite, blue-quartzite, and iron-formation. The
Stillwater Complex and metasedimentary country rocks occupy a fault-bounded block in the
northern Beartooth Mountains in south-central Montana. The majority of the metasedimentary
rocks exposed in this block are metagraywacke; iron-formation , blue quartzite, diamictite, and
metashale only crop out within 1.6 km of the base of the Stillwater Complex in a trend that is
roughly concordant to the contact (Page, 1977; Page and Zientek, 1985). Detrital zircons from
these metasedimentary rocks are at least 3,200 m.y. old (Nunes and Tilton, 1971; Lambert and
others, 1985). Prior to intrusion of the Stillwater Complex, the metasedimentary rocks
experienced at least 2 folding events (Page, 1979).



The metasedimentary rocks were contact metamorphosed by the Stillwater Complex (Page,
1977; Vaniman and others, 1980; Labotka, 1985); nearest the contact, mineral assemblages are
representative of pyroxene-hornfels facies metamorphism. The prograde metamorphic minerals are
quartz, magnetite, gruenerite, inverted pigeonite, and fayalite in iron-formation; and quartz,
cordierite, hypersthene, plagioclase, and biotite in metagraywacke (quartz-bearing hornfels).
Minerals in metashale (cordierite-hypersthene homnfels) are similar to those in graywacke with the
exception that quartz, plagioclase, and biotite are subordinate or absent. Farthest from the contact,
metagraywacke has been metamorphosed to quartz-biotite schist and includes rare cordierite,
anthopyllite, and/or garnet.

Sulfide assemblages in the metagraywackes, metashales, and iron-formation are similar,
consisting of pyrrhotite, pentlandite, and chalcopyrite in the pyroxene-hornfels facies zone. In the
lower grade rocks farthest from the contact with the Stillwater Complex, pyrite is also present.
Intergranular textures are most common, although centimeter-to meter-scale, semi-massive lenses
of sulfide minerals can be found. Fracture-controlled sulfide mineralization is rare and may
represent very local mobilization of sulfide minerals. The sulfur content of iron-formation and
associated sulfide-bearing hornfels ranges from 0.01 to 25.9 weight percent; the average of 41
analyses is 3.2 weight percent. This contrasts markedly with metagraywacke and metashale where
sulfur content ranges from <.01 t0 6.03 weight percent with an average of 0.76 for 22 analyses.

The Stillwater Complex is a layered ultramafic to mafic intrusion approximately 2,700 Ma old
(Page, 1977; DePaolo and Wasserberg, 1979). Nearly 5.5 km of layered stratigraphy of the
Stillwater Complex has been exposed as a result of northward tilting of the complex during
deformation in the Laramide. This succession of layered cumulates has been divided into five
series and approximately 17 zones (fig. 2; Zientek and others, 1985). The five series divisions in
stratigraphic order are Basal, Ultramafic, Lower Banded, Middle Banded, and Upper Banded.
Sulfide minerals, typically pyrrhotite, pentlandlte and chalcopyrite, occur throughout the
stratigraphic succession in proportions, and with textures, that indicate that they formed as a result
of crystallization of an immiscible sulfide liquid.

The Basal series consists dominantly of orthopyroxene cumulate although cumulus plagioclase,
olivine, augite, and chromite can be present in the lower part of this unit (Page, 1979; Zientek and
others, 1985). Disseminated, matrix, and massive sulfide accumulations are typical of the Basal
series; generally the proportion of sulfide minerals increases toward the base of the complex (Page,
1979).

The Ultramafic series is made up of rocks which contain various proportions of cumulus °
olivine, bronzite, and chromite (Jackson, 1961; Raedeke and McCallum, 1984). The chromite -
seams that occur in the lower subdivision of the Ultramafic series (Peridotite zone) have sulfide
minerals associated with them; typically, the modes of sulfide minerals are reported to be 0.01 vol
% or less (Page, 1971; Mann and others, 1985). Disseminated sulfide minerals are common in
cyclic units that characterize the Peridotite zone; however, significant occurrences of matrix and -
massive sulfide are not. Matrix and massive Fe,Cu, Ni sulfide occurrences in the lower part of the
Ultramafic series in the Iron Mountain area (Camp deposit) and massive sulfide lenses associated
with the G chromitite in the Mouvat Cr mine (Page and others, 1976) are notable exceptions.
Pegmatoid pods that contain disseminated to matrix sulfide minerals and graphite occur locally near
the top of the Ultramafic series (Volborth and Housely, 1984).

The Lower, Middle, and Upper Banded series are distinguished by the presence of cumulus
plagioclase. The presence (or absence) and proportion of cumulus bronzite, augite, olivine, and
inverted pigeonite, as well as charges in crystallization order, are the basis for subdivision of the
Banded series (McCallum and other, 1980; Segerstrom and Carlson, 1982; Todd and others,
1982). At least nine sulfide-enriched intervals have been found in the Lower, Middle, and Upper
Banded series (McCallum and others, 1980; Todd and others, 1982); the most notable are the
PGE-enriched sulfide mineral occurrences referred to as the J-M Reef (Todd and others, 1982;
Barnes and Naldrett, 1985) and the Picket Pin deposit (Boudreau and McCallum, 1986).

A suite of Stillwater-associated sills and dikes intrude the metasedimentary rocks beneath the
base of the complex and are the best analogues available for modeling the parent magmas for the
Stillwater Complex (Zientek, 1983; Helz, 1985). At least 5 distinct compositional types have been
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recognized: 1) gabbronoritic diabase (group 1 of Helz, 1985), 2) olivine gabbroic diabase (group 6
of Helz, 1985), 3) high-Ti noritic diabase (group 4 of Helz, 1985), 4) high-Mg gabbronorite
(group 2 of Helz, 1985), and 5) mafic norite (group 3 of Helz, 1985). These sills and dikes have
only been found in the metashale units near the base of the complex. Disseminated sulfide
minerals occur in all the sills and dikes; however, the common association of matrix and massive
accumulations of sulfide minerals are restricted to mafic norite sills and dikes (Zientek, 1983). As
with the Stillwater Complex, the sulfide minerals are dominated by pyrrhotite, pentlandite, and
chalcopyrite and formed as a result of the crystallization of an immiscible sulfide liquid.

Sampling all sulfide mineral occurrences from the Stillwater Complex was beyond the scope of
this study; only major concentrations of sulfide minerals were investigated. In addition, major
lithologies of metasedimentary rocks and Stillwater-associated sills and dikes were sampled. In
all, 233 samples were analyzed (table 1 and fig. 3).

METHODS
Depending upon grain size, sulfide minerals were concentrated by drilling with a dental drill or
were removed from crushed whole rock by acid-extraction (Kiba reagent; Sasaki and others,
1979). HjS liberated by acid extraction was first converted to CdS, and finally Ag)S. SO, for

isotopic analysis was prepared by burning either sulfide concentrates or Ag»S in vacuum with

excess CuO. 8348 values are reported as per mil deviation from Canon Diablo troilite, with an
analytical uncertainty of + 0.1 per mil. .

RESULTS

8348 values for the entire group of 233 sample range between -3.8 and 7.8, average 0.4, and
have a standard deviation of 1.7 (table 2). The rather narrow range of values with a mean very
close to the presumed mantle isotopic composition of sulfur is not an unexpected result for rocks
between 2,700 and 3,200 m.y. old (Skyring and Donnelly, 1982; Monster and others, 1579).
However, inspection of the data and an analysis of variance show that three statistically distinct
groups of samples can be recognized (fig. 4). Sulfides from the first group, metagraywacke and
metashale, have a mean value of 2.8 per mil. The second group consists of magmatic sulfide
‘minerals which are concentrated near the lower margin of the complex, magmatic sulfide minerals
within the Stillwater-associated sills and dikes, and sulfide minerals within iron-formation . This
group has a mean value of -0.7 per mil. The third group has a mean value of 1.2 per mil and
includes magmatic sulfide minerals within the Stillwater Complex, such as the J-M reef, which are
not associated with the basal contact. :

Metasedimentary Rocks

Samples of metagraywacke and metashale have a mean §34S value of 2.8 per mil and a
standard deviation of 1.0 per mil. Samples of metagraywacke were collected from the innermost
part of the contact aureole in the Mountain View area, from a septum separating medium- and
coarse-grained quartz monzonite intrusions in the vicinity of Flume Creek, and from the Divide
Creck area, where contact metamorphic effects are negligible and the regional metamorphic fabric
is preserved. Samples of the metashale (cordierite-hypersthene hornfels) come from the innermost

part of the contact aureole in the Mountain View area. There is no statistical difference in 8348
values between samples of metagraywacke and those of metashale. Values in metamorphic rocks

are interpreted to reflect values of the protoliths; there is no change in 8348 with metamorphic
grade according to these data.
The isotopic composition of sulfur in iron-formation is approximately 4 per mil lower than

sulfur in metashale and metagraywacke. Samples of iron-formation have a mean 534S of -0.8 per
mil with a standard deviation of 0.8 per mil. These samples come from the Iron Mountain and
Crescent Creek areas and show mineral assembleges typical of pyroxene hornfels metamorphism.



The small deviation of the mean 834S from zero per mil is typical of sulfide minerals in
Archean sedimentary rocks (Monster and others, 1979; Skyring and Donnelly, 1982). In younger

rocks, 834S values of sulfide minerals derived from bacteriogenic HS can provide a record of the

presence of sulfate-reducing bacteria in sedimentary rocks, usually manifested by a spread of 5345
values that are enriched in 32S. In rocks older than 2,350 Ma, the approximate time when the
oxygenic weathering cycle was established (Cameron, 1982), the 5345 values of sedimentary

rocks do not clearly indicate the presence of sulfate-reducing bacteria and commonly have 534s
values close to zero. This suggests that the ultimate source of sulfur for the Stillwater
metasedimentary rocks was magmatic and mantle derived; the immediate source of sulfur may have
been volcanic exhalations or detrital sulfide that survived weathering in an oxygen-poor
atmosphere.

Stillwater Complex
Samples from the J-M Reef, the Picket Pin deposit, and the first cyclic unit of the Peridotite

zone in the Mountain View area have a mean 834S value of 1.2 with a standard deviation of 1.4
per mil. These values are well within the range of -1 to 2 per mil and the average of 1.3 per mil -
reported by Ohmoto and Rye (1979) for mafic and ultramafic igneous rocks.

The J-M Reef, an interval containing sulfide minerals and other phases enriched in PGE is
approximately in the middle of the Lower Banded series (fig. 2; Todd and others, 1982). The Reef
occurs within the Olivine-bearing I zone, a complex unit containing troctolitic and anorthositic
rocks, underlain by gabbronorites, norites, and anorthosites of the Gabbronorite I zone and

overlain by norites of the Norite II zone. Samples from the reef have a mean 8348 value of 1.0 per .
mil and a standard deviation of 1.2. Samples collected along the strike length of the J-M Reef
show no systematic variability in the isotopic composition of sulfur.

The Picket Pin deposit consists of a number of sulfide-enriched layers, lenses, and
disconformable pipes that occur in the upper part of the Anorthosite II zone and the lower part of
the Olivine-bearing zone V (fig. 2). Boudreau and McCallum (1985) categorized the sulfide
accumulations as PGE-poor or PGE-bearing. Typically, the PGE-poor sulfide accumulations

occur in medium-grained anorthosite at the top of the Anorthosite II zone (mean 834S 1.0 per mil)
and in Olivine-bearing zone V (mean 3345 1.6 per mil) and form numerous, thin, locally -

continuous layers. The PGE-bearing sulfide mineral accumulations (mean 534524 per mil) occur
as discontinuous lenses or discordant pipes in coarse-grained anorthosite which underlies the
medium-grained anorthosite that forms the top of the Anorthosite II zone. The PGE-bearing
sulfide accumulations may owe their origin, in part, to the migration of volatile-enriched
intercumulus melt (Boudreau and McCallum, 1985). The stratified PGE-poor sulfide
accumulations may have resulted from differential rates of silicate and sulfide accumulation in
gravity-stratified units (Foose, 1985). Despite the differences in occurrence, composition, and

mode of formation, no statistically significant variations in 834S values were observed between the
PGE-poor or PGE-bearing sulfide accumulations.
The samples from the first cyclic unit of the Peridotite zone of the Ultramafic series in the

Mountain View area are sparsely mineralized and have a mean 334S of 2.3 per mil. They contain
trace quantities of sulfide minerals that presumably result from the exsolution and crystallizations
of small amounts of sulfide liquid from a magma saturated with sulfur. A complete cyclic unit in
the Peridotite zone begins with a basal olivine cumulate, which may or may not contain a chromite
seam, that grades upward into a bronzite-olivine cumulate, and finally into a bronzite cumulate
(Jackson, 1961). The cyclic units are probably products of partial fractional crystallization from a
batch of basaltic magma. As is typical of many of the cyclic units in the Peridotite zone, the first



cycle in the Mountain View area is incomplete, beginning with an olivine cumulate and grading
upwards into a bronzite-olivine cumulate.

It is rather remarkable that sulfur isotope values of sulfide occurrences within the Stillwater
Complex that are so widely separated in stratigraphic section and proposed to originate by very
different processes (sulfide liquid exsolution as result of partial fractional crystallization of sulfur
saturated magma; the mixing of magmas; and migration of a volatile-enriched intercumulus melt
phase) are statistically indistinct. This may suggest that this part of the Stillwater Complex had
access to a very uniform S reservoir.

Sulfide accumulations in the Basal series, Peridotite zone, and the Stillwater-associated sills and
dikes

Sulfide accumulations at the base of the Stillwater Complex and in Stillwater-associated sills

and dikes have a mean 534S value of -0.5 and a standard deviation of 1.2 per mil. These results
are well within the range of values expected for mantle-derived sulfur in mafic and ultramaﬁc
rocks. However, these sulfide minerals are consistently enriched in 323 relative to the
disseminated sulfide minerals in the metagraywacke and metashale, and other sulfide occurrences
in the Stillwater Complex, such as the J-M Reef and the Picket Pin deposit. Sulfide minerals in

iron-formation are similarly enriched in 323 with a range of -2.6 t0 0.6 per mil and a mean value of
-0.8.

Samples of the sulfide mineral accumulations in the Basal series have a mean 834S of -0.2 per
mil and a standard deviation of 1.1. Disseminated, matrix, and massive sulfide mineralization in

the Peridotite zone in the Iron Mountain area (Camp deposit) has mean 534S of -0.7 per mil and a
standard deviation of 0.3.

The variety and extent of a suite of Stillwater-associated sills and dikes have only recently been
documented (Zientek, 1983; Helz, 1985). Of the five distinct compositional types, the three most
common were sampled in this study. Mafic norite sills and dikes in the Mountain View area,
ranging from orthopyroxenite to gabbronorite, are enriched in disseminated to massive sulfide
minerals. The sulfide minerals in the mafic norite sills and dikes are commonly concentrated
towards the borders and in the adjacent metasedimentary rocks (Zientek, 1983). The isotopic
composition of sulfur in these dikes and associated stringers in adjoining hornfels is the lightest
observed in this study. There is no statistical difference in the isotopic composition of sulfur .
between sulfide minerals found in mafic norite intrusions and massive sulfide stringers in

metasedimentary rocks that are associated with these intrusions (fig. 3). 534S values of
disseminated sulfide minerals in two of the other sill and dike types, gabbronorite and olivine

gabbro, range from -2.2 to 2.4 per mil. Mean 534S values for gabbronorite and olivine gabbro are
-0.3 and 0.0, respectively.

DISCUSSION
In general, results of this study are consistent with what is alreadly known about the isotopic
composition of sulfur in Archean metasedimentary rocks and mafic and ultramafic igneous rocks;

534S values are close to mantle values of 0 per mil and show low variance. One feature that

deserves further consideration is the enrichment in 32§ in sulfide minerals in mafic norite sills and
dikes and in earliest-formed sulfide minerals in the Stillwater Complex. The isotopic composition
of sulfur in sulfide accumulations found near the base of the Stillwater Complex is
indistinguishable from that of iron-formation or has values intermediate between those typical of
iron-formation and disseminated, magmatic sulfide accumulations found higher in the Stillwater
Complex (fig. 4). Three processes could produce the shift in isotopic composition of sulfide
minerals found near the base of the complex and in the mafic norite sills and dikes: 1)



emplacement of magmas characterized by distinct sulfur isotopic values , 2) magmatic fractionation

of the sulfur isotopes or 3) assimilation of 34g. -depleted sulfur from iron-formation .

Emplacement of a sulfide-enriched, isotopically lighter magma near the base of the Stillwater
Complex could explain the unique composition of some of the basal sulfide accumulations.
Numerous investigations have documented the importance of repeated injection of new magma in
the petrogenesis of ultramafic to mafic layered intrusions, (Barnes and Naldrett, 1986; Campbell
and others, 1983; Irvine and others, 1983; Lambert and Simmons, 1987 and 1988; Raedeke and
McCallum, 1984; Sharpe, 1581 and 1985; Todd and others, 1582). These magmas may have been
derived from different source regions in the mantle and lower crust so there is no reason to assume
that each pulse of magma would have identical sulfur isotopic compositions. Changes in
crystallization order and mineral fractionation trends suggest the rocks that constitute the Basal
series may have had a parent magma different from cumulates that comprise the overlying
Ultramafic series.

There are several studies that suggest that sulfur isotopes may factionate as a result of magmatic
processes even though, based on equilibrium fractionation factors, no fractionation is predicted at

magmatic conditions of approximately 900-1,0000C and fO too reduced for oxidized sulfur
species (Ohmoto and Rye, 1979). Early studies suggested that early formed basal disseminated to

massive sulfide accumulations are depleted in 343 relative to magmas from which they segregated
(Shima and others, 1963). Results from the Inziwa sill, South Africa showed a weighted mean

8345 of 1.0 for the sill whereas the basal sulfide accumulations had 834S values that ranged from
-2.5 to0 -3.0. For Archean layered sills in the Deer Lake Complex, Minnesota, sulfur isotopic
differences of up to 2 per mil exist between earlier-formed chalcopyrite-rich pyroxenite units
(isotopically heavy) and overlying chalcopyrite-poor gabbro units (isotopically light) (Ripley,
1983). For Sudbury ore deposits, sulfide minerals formed from residual Cu-rich liquids are
isotopically heavier than Fe-rich sulfide minerals which crystallized earlier as part of a monosulfide
solid solution (Naldrett, 1581). In our study, a chalcopyrite-segregation derived from a massive
sulfide accumulation associated with a mafic norite sill or dike shows a similar isotopic shift (see

sample 368-307A 595; table1). 334 for the chalcopyrite segregation is -1.8 per mil compared to
-3.3 per mil for the pyrrrhotite-rich massive sulfide associated with it. This suggests that sulfur
isotopic variations resulting from the fractionation of silicate or sulfide liquids can produce isotOpic
shifts on the order of several per mil.

Finally, sulfur addition to the magmas by assimilation from local crustal sources may have
resulted in formation of basal deposits with isotopic compositions at variance with the rest of the
complex. This type of process has been well documented for sulfide deposits at the Duluth
Complex (Mainwaring and Naldrett, 1577; Ripley 1581); Noril'sk Talnahk (Godlevskii and
Grinenko, 1963; Grenenko, 1985); and the Bushveld Complex (Buchanan and others, 1981). In
these examples, magmatic ores have sulfur isotope values that show significant deviation from 0 -
per mil and are shifted toward the composition of sulfur in nearby crustal rocks. These results
indicate assimilation of crustal sulfur which ultimately led to the exsolution of immiscible sulfide
liquids from the magma.

Unfortunately, in the case of the Stillwater Complex, the isotopic composition of sulfur alone
is insufficient to select one of the models. However, bulk composition of the Fe, Cu, Ni ores
supports the addition of sulfur to the Stillwater magma.

The tenor of the ores found near the base of the complex are quite low relative to other
magmatic sulfide deposits; Cu and Ni concentrations calculated to 100 per cent sulfide for the
sulfide accumulations in the Peridotite zone, Basal series, and mafic norite sills and dikes rarely
exceed 2 and 4 wt %, respectively (fig. 5). These numbers are derived from results of selective
sulfide leach studies reported in Page and Simon (1978) and other information summarized in table
3. The data plotted in figures 5 and 6 are a subset of a larger information set; however, only those
determinations that had reasonable calculated total S in 100 per cent sulfide ( greater than 30 wt %)
and for which values of R (mass ratio of silicate liquid to sulfide liquid) independently calculated
for Cu and Ni were in general agreement (IRCy-RNil less than 200).



If we can approximate the composition of the magma from which the immiscible sulfide liquids
exsolved, then an estimate for the initial Ni and Cu contents (X;0) of the silicate magma as well as
the distribution coefficient of Ni and Cu between the silicate magma and the sulfide liquid (Dj) can
be made. Given the final concentration of Ni and Cu in the immiscible sulfide liquid (Yj), R, a

measure of how much silicate liquid an immiscible sulfide liquid has equilibrated with, can be
calculated from the a modified version of the Nernst distribution equation:

(Di2-1)
R —
(D; - D;?)

where D;4 is the apparent distribution coefficient and is equal to the final concentration of an
element in the sulfide liquid (Y;) divided by the initial concentration of that element in the silicate

magma (X;°) (Campbell and Naldrett, 1979; Campbell and Barnes, 1984).

The parental magmas for the Basal series and the lower part of the Ultramafic series are best
represented by group 2 high-Mg gabbronorites or group 3 mafic norites of the Stillwater-associated
sills and dikes (Helz, 1985). Because group 3 mafic norites have high sulfide mineral contents, Ni
and Cu estimates for the initial silicate liquid can not be obtained by direct analysis of the rocks;
therefore estimates for the initial Ni and Cu contents of the magma (250 ppm for Ni and 120 ppm
for Cu) are based on published information for group 2 high-Mg gabbronorites (Helz, 1985).
Distribution coefficients appropriate for basaltic magmas (DCy = 200; DNj = 250) were used in the
calculation of R for the basal sulfide accumulations (Rajamani and Naldrett, 1978; Naldrett, 1981).
The results of these calculation are shown in figure 6,wherein calculated values of R rarely exceed
400 and generally are less than 200. '

The results of similar calculations for magmatic sulfide deposits associated with representative
Archean and Proterozoic komatiites, the J-M Reef, and the Talankh deposit are illustrated in figure
5. The curves show how the compostion of an immiscible sulfide liquid varies as a function of the
R value for differing bulk compositions of the initial silicate liquid. Symbols on the curves
correspond to log R values of 1 (nearest the origin), 2, 2.5, 3 and S or greater. Model parameters
are summarized in table 4. Ni and Cu contents for examples of deposits corresponding to each
model type are also shown for comparison.

R values of 1023 to 105 would account for the compositions of many magmatic sulfide
deposits associated with komatiites. Magmatic deposits associated with mafic magmas such as the
J-M Reef or the Talnakh deposit require R values in excess of 107; this contrasts dramatically with
the values of 1023 or less required to model the low Ni and Cu contents of the basal sulfide
accumulations at Stillwater.

Low values of R combined with the high modal abundance of sulfide minerals in the basal
sulfide accumulations is suggestive of addition of sulfur to Stillwater magmas. The most likely
source of sulfur is iron-formation that predates the Stillwater Complex. In-situ addition of sulfur

from iron-formation is supported in part by correlation of 534S values in basal sulfide deposits
with the presence of iron-formation in the basement. The composition of sulfide minerals in the
Basal series in the Iron Mountain, Nye Basin, and Benbow areas, and the Peridotite zone in the
Iron Mountain area, where iron-formation is present in the footwall, is isotopically lighter than
sulfide minerals in the Basal series and Peridotite zone at Mountain View, where no iron-formation
is present.

It is clear that in-situ assimilation of sulfur was not the only process involved in precipitation of
the sulfide deposits found near the base of the Stilwater Complex. There are several lines of
evidence that indicate that Stillwater magmas responsible for the formation of sulfide deposits near
the base of the complex were sulfur saturated and some carried an immiscible sulfide liquid in
suspension at the time of intrusion. First, inclusions of sulfide minerals in the cores of cumulus
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crystals in the Basal series and in early formed crystals in mafic norite sill and dike rocks are
interpreted to represent droplets of the immiscible sulfide liquid which were trapped at the time
early-forming crystals were growing from the magma. Second, the interstitial sulfide minerals in
the Basal series are gravity stratified; in other words, their abundance increases towards the floor
of the complex. This would not be expected if the sulfide minerals had formed from an immiscible
sulfide liquid which exsolved when the rock was nearly completely crystallized. Third, magmatic
sulfide minerals are commonly concentrated towards outer margins of mafic norite sills and dikes,
perhaps as a result of flowage segregation. Many of these mineralized sills and dikes occur in the
Mouat Ni-Cu prospect in the Mountain View area where there is no iron-formation in the footwall.
At least some of the sulfide-rich margins of mafic norite sills and dikes preserve quench textures in
the intergrown silicate minerals (Zientek, 1983). This evidence suggests the magma that
crystallized to form mafic norite sills and dikes and Basal series assimilated sulfur, were
transported, and emplaced with an immiscible sulfide liquid in suspension.

CONCLUSIONS
The isotopic evidence supports a model of sulfur addition to the magmas (by sulfur
assimilation from local crustal sources) from which the magmatic sulfide deposits found at the base
of the Stillwater Complex formed . Sulfur in iron-formation appears to be a likely comtaminant.
The low R-values of the immiscible sulfide liquid and the low tenor of the Fe-Cu-Ni ores at the
base of the Stillwater Complex is consistent with addition of sulfur to the Stillwater magma.
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Figure Captions

Figure 1.--Simplified geologic and location map of the Stillwater Complex and adjacent areas.
Modified from Page (1977).

Figure 2.--Simplified stratigraphic column for the Stillwater Complex showing the position of
reported sulfide mineral occurrences, highlighting those analyzed in this study. Modified from
McCallum and others (1980); Page and others (1985); Zientek and others (1985).

Figure 3.--Histograms showing the distribution of 8345 values in the Stillwater Complex,
Stillwater associated sills and dikes, and metamorphosed sedimentary rocks.

Figure 4.--Box plots illustrating 5345 summary statistics for samples analyzed in this study; the
top and bottom of the boxes are the 25th and and 75th percentiles respectively. Whiskers
extending above and below the box indicate the values of the 10th and 90th percentiles. Values
that fall outside the 10th and 90th percentiles are plotted as circles. Notches on the side of the
box indicate the 95th confidence interval about the median value.

Figure 5.--Cu and Ni contents in 100 per cent sulfide of various magmatic sulfide ores. Curves
illustrate how the composition of sulfide liquids in equilibrium with various hypothetical
silicate liquids change as a function of R, the mass ratio of silicate liquid to sulfide liquid.
Compositions of these model liquids and values of distribution coefficients used in these
calculations are given in table 4. Symbols along the curves represent logR values of 1, 2, 2.5,
3, and 5 or greater. Sources of information: Naldrett (1981); Barnes and Campbell (1984);
Page and Simon (1978); and table 3.

Figure 6.--Calculated values of RCy and RNj for disseminated, matrix, and massive sulfide from

sulfide accumulations in the Basal series, the Peridotite zone of the Ultramafic series, and mafic
norite sills and dikes. Information derived from Page and Simon (1978) and table 3.
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Table 4.--Initial Ni and Cu contents (X;i°, in ppm) and distribution coefficients of Ni and Cu (Dj)
between silicate magma and sulfide liquid used to model to variation of the composition of an
immiscible sulfide liquid as a function of R

o o Sul./Sil. Sul./Sil.
Model XNi XCu DNi DCy
Archean komatiite(1) 1,500 50 100 250
Proterozoic komatiite(1) 890 148 174 250
Talnakh() 276 436 275 250
Stillwater basal sulfides 250 125 275 250
J-M Reef 300 275 310 250)

(1) Data from Naldrett (1981)
() Data from Campbell and Barnes (1984)
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